排序算法:一种能将一串数据依照特定的排序方式进行排列的一种算法。
排序算法性能:取决于时间和空间复杂度,其次还得考虑稳定性,及其适应的场景。
稳定性:让原本有相等键值的记录维持相对次序。也就是若一个排序算法是稳定的,当有俩个相等键值的记录R和S,且原本的序列中R在S前,那么排序后的列表中R应该也在S之前。
1-冒泡排序
原理
俩俩比较相邻记录的排序码,若发生逆序,则交换;有俩种方式进行冒泡,一种是先把小的冒泡到前边去,另一种是把大的元素冒泡到后边。冒泡法大家都较熟悉。其原理为从a[0]开始,依次将其和后面的元素比较,若a[0]>a[i],则交换它们,一直比较到a[n]。同理对a[1],a[2],…a[n-1]处理,即完成排序
冒泡排序的基本概念:
依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。至此第一趟结束,将最大的数放到了最后。在第二趟:仍从第一对数开始比较(因为可能由于第2个数和第3个数的交换,使得第1个数不再小于第2个数),将小数放前,大数放后,一直比较到倒数第二个数(倒数第一的位置上已经是最大的),第二趟结束,在倒数第二的位置上得到一个新的最大数(其实在整个数列中是第二大的数)。如此下去,重复以上过程,直至最终完成排序。由于在排序过程中总是小数往前放,大数往后放,相当于气泡往上升,所以称作冒泡排序。
实现:
外循环变量设为i,内循环变量设为j。假如有10个数需要进行排序,则外循环重复9次,内循环依次重复9,8,…,1次。每次进行比较的两个元素都是与内循环j有关的,它们可以分别用a[j]和a[j+1]标识,i的值依次为1,2,…,9,对于每一个i,j的值依次为1,2,…10-i。
图示:
![此处输入图片的描述][1]
性能
时间复杂度为O(N^2),空间复杂度为O(1)。排序是稳定的,排序比较次数与初始序列无关,但交换次数与初始序列有关。
优化
若初始序列就是排序好的,对于冒泡排序仍然还要比较O(N^2)次,但无交换次数。可根据这个进行优化,设置一个flag,当在一趟序列中没有发生交换,则该序列已排序好,但优化后排序的时间复杂度没有发生量级的改变
代码
|
|
冒泡法原理简单,但其缺点是交换次数多,效率低。下面介绍一种源自冒泡法但更有效率的方法“选择法”。
2-选择排序
原理
每次从未排序的序列中找到最小值,记录并最后存放到已排序序列的末尾.选择法循环过程与冒泡法一致,它还定义了记号k=i,然后依次把a[k]同后面元素比较,若a[k]>a[j],则使k=j.最后看看k=i是否还成立,不成立则交换a[k],a[i],这样就比冒泡法省下许多无用的交换,提高了效率。
性能
时间复杂度为O(N^2),空间复杂度为O(1),排序是不稳定的(把最小值交换到已排序的末尾导致的),每次都能确定一个元素所在的最终位置,比较次数与初始序列无关。
代码
选择法比冒泡法效率更高,但说到高效率,非“快速法”莫属,现在就让我们来了解它。
3-快速排序
原理
基本思想:
快速排序是对冒泡排序的一种改进。由C. A. R. Hoare在1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
实现:
设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。
一趟快速排序的算法是:
1)设置两个变量i、j,排序开始的时候:i=0,j=N-1;
2)以第一个数组元素作为关键数据,赋值给key,即 key=A[0];
3)从j开始向前搜索,即由后开始向前搜索(j – ),找到第一个小于key的值A[j],A[i]与A[j]交换;
4)从i开始向后搜索,即由前开始向后搜索(i ++ ),找到第一个大于key的A[i],A[i]与A[j]交换;
5)重复第3、4、5步,直到 I=J; (3,4步是在程序中没找到时候j=j-1,i=i+1,直至找到为止。找到并交换的时候i, j指针位置不变。另外当i=j这过程一定正好是i+或j-完成的最后令循环结束。)
图示:
![此处输入图片的描述][2]
举例说明:
如无序数组[6 2 4 1 5 9]
a),先把第一项[6]取出来,
用[6]依次与其余项进行比较,
如果比[6]小就放[6]前边,2 4 1 5都比[6]小,所以全部放到[6]前边
如果比[6]大就放[6]后边,9比[6]大,放到[6]后边,//6出列后大喝一声,比我小的站前边,比我大的站后边,行动吧!霸气十足~
一趟排完后变成下边这样:
排序前 6 2 4 1 5 9
排序后 2 4 1 5 6 9
b),对前半拉[2 4 1 5]继续进行快速排序
重复步骤a)后变成下边这样:
排序前 2 4 1 5
排序后 1 2 4 5
前半拉排序完成,总的排序也完成:
排序前:[6 2 4 1 5 9]
排序后:[1 2 4 5 6 9]
性能
快排的平均时间复杂度为O(NlogN),空间复杂度为O(logN),但最坏情况下,时间复杂度为O(N^2),空间复杂度为O(N);且排序是不稳定的,但每次都能确定一个元素所在序列中的最终位置,复杂度与初始序列有关。
优化
当初始序列是非递减序列时,快排性能下降到最坏情况,主要因为基准每次都是从最左边取得,这时每次只能排好一个元素。
所以快排的优化思路如下:
优化基准,不每次都从左边取,可以进行三路划分,分别取最左边,中间和最右边的中间值,再交换到最左边进行排序;或者进行随机取得待排序数组中的某一个元素,再交换到最左边,进行排序。
在规模较小情况下,采用直接插入排序
代码
|
|
4-插入排序
原理
依次选择一个待排序的数据,插入到前边已排好序的序列中。
性能
时间复杂度为O(N^2),空间复杂度为O(1)。算法是稳定的,比较次数和交换次数都与初始序列有关。
优化
直接插入排序每次往前插入时,是按顺序依次往前找,可在这里进行优化,往前找合适的插入位置时采用二分查找的方式,即折半插入。
折半插入排序相对直接插入排序而言:平均性能更快,时间复杂度降至O(NlogN),排序是稳定的,但排序的比较次数与初始序列无关,总是需要foor(log(i))+1次排序比较。
使用场景
当数据基本有序时,采用插入排序可以明显减少数据交换和数据移动次数,进而提升排序效率
代码:
|
|
5-希尔排序
原理
Shell法是一个叫 shell 的美国人与1969年发明的。它首先把相距k(k>=1)的那几个元素排好序,再缩小k值(一般取其一半),再排序,直到k=1时完成排序
插入排序的改进版,是基于插入排序的以下俩点性质而提出的改进方法:
- 插入排序对几乎已排好序的数据操作时,效率很高,可以达到线性排序的效率。
- 但插入排序在每次往前插入时只能将数据移动一位,效率比较低。
性能
开始时,gap取值较大,子序列中的元素较少,排序速度快,克服了直接插入排序的缺点;其次,gap值逐渐变小后,虽然子序列的元素逐渐变多,但大多元素已基本有序,所以继承了直接插入排序的优点,能以近线性的速度排好序。
|
|
6-归并排序
原理
分而治之思想:
- Divide:将n个元素平均划分为各含n/2个元素的子序列;
- Conquer:递归的解决俩个规模为n/2的子问题;
- Combine:合并俩个已排序的子序列。
性能
时间复杂度总是为O(NlogN),空间复杂度也总为为O(N),算法与初始序列无关,排序是稳定的。
优化
优化思路:
- 在规模较小时,合并排序可采用直接插入;
- 在写法上,可以在生成辅助数组时,俩头小,中间大,这时不需要再在后边加俩个while循环进行判断,只需一次比完
|
|
7-堆排序
原理
堆的性质:
- 是一棵完全二叉树
- 每个节点的值都大于或等于其子节点的值,为最大堆;反之为最小堆。
堆排序思想:
- 将待排序的序列构造成一个最大堆,此时序列的最大值为根节点
- 依次将根节点与待排序序列的最后一个元素交换
- 再维护从根节点到该元素的前一个节点为最大堆,如此往复,最终得到一个递增序列
性能
时间复杂度为O(NlogN),空间复杂度为O(1),因为利用的排序空间仍然是初始的序列,并未开辟新空间。算法是不稳定的,与初始序列无关。
使用场景
想知道最大值或最小值时,比如优先级队列,作业调度等场景。
代码
|
|